Crowdsourcing Soft Data for Improved Urban Situation Assessment

Barry Park, Anders Johannson
Systems Centre, Department of Civil Engineering
University of Bristol
Bristol, UK
{cebsp, a.johansson}@bristol.ac.uk

David Nicholson
Advanced Technology Centre
BAE Systems
Bristol, UK
david.nicholson2@baesystems.com

Abstract—Conventional “hard” sensing in urban spaces is challenged by the complexity of the environment, creating gaps in situation assessment and possible confusion due to data association errors. Crowdsourced “soft” reports from human observers may remedy this problem but require techniques for fusing hard and soft data. This paper describes an experimental crowdsourcing system to evaluate the potential improvement in situation assessment resulting from the fusion of hard and soft data. The paper then applies a new combination of Bayesian inference algorithms, Particle Filtering and Softmax learning, to a canonical test problem: tracking a single moving object moving along a road network. The fusion of soft reports with intermittent hard data is shown to yield a marked improvement in situation assessment performance. Key to achieving such gains in practice will be appropriate incentives to reward trustworthy reporters along with methods to reduce sensitivity to any remaining untrustworthy reports.

Index Terms—crowdsourcing; tracking; fusion; uncertainty; trust

I. INTRODUCTION

Reliable and accurate situation assessment (SA) underpins decision-making in a wide range of applications. Typically SA is derived from “hard” physical sensors, such as radar, and contextual sources of information such as geographical databases [1].

Consider an urban scene in which a decision-maker requires an accurate and complete picture of the whereabouts of one or more moving objects of interest. This could pose a difficult computational challenge for an information fusion process because the hard sensors offer only sparse coverage of the objects due to limited fields of view and obscuration.

Crowdsourcing is an emerging approach for mitigating difficult computational problems by utilizing widely available human resource [2]. In the case of urban SA, human “sensors” could be tasked to provide “soft” observations about an object that extend and complement hard data from physical sensors. They extend the hard data by plugging gaps in coverage and complement the physical attributes of objects measured by hard sensors by providing soft relational measurements [3].

This paper describes a key aspect of our work in the development of a crowdsourcing platform for investigating urban SA for applications such as defence, policing, emergency response, and future smart cities. It focuses on the problem of how to fuse hard and soft observations within a rigorous and robust mathematical framework for SA. The goal was to quantify under what circumstances and to what extent the soft reports are able to improve SA performance. The background to this work is: (a) a growth in the theory and application of crowdsourcing and our ongoing effort to harness this for improving urban SA, and (b) the need to integrate existing mathematical approaches for SA, particularly hard/soft fusion, in a common framework.

This background is expanded in Section II, and demonstrates examples of applying the crowdsourcing paradigm to urban SA. It is followed in Section III by a description of a simulation-based example designed to evaluate SA performance with and without soft data. Section IV describes a particularly versatile Bayesian inference framework for hard/soft data fusion. A number of simulation-based experiments were performed to evaluate this framework and the results are presented and discussed in Section V, followed by conclusions in Section VI.

II. BACKGROUND

A. Crowdsourcing

Some problems remain immensely challenging to solve in sufficient time with the required level of accuracy due to their computational demands or the limitations on data collected by conventional means. Crowdsourcing is now being increasingly utilized as an effective means of overcoming these problems [4].

The idea behind crowdsourcing is to outsource a problem to a human task force and request data (e.g. observations or labels) that facilitates in its solution. The data is typically returned in the form of a soft report or preference. Incentives are awarded to stimulate timely and truthful reporting. However, the crowdsourced data is still likely to be of variable quality and must be carefully filtered and aggregated to reduce bias and uncertainty.

In the case of urban SA, human observers could be tasked to report on vehicle positions relative to certain landmarks. These tasks might be undertaken in a live situation, making use of smartphone devices to input data. Alternatively, they could be performed offline by tasking participants to report on video playback of a scene from their laptop or desktop computers at home.
This paper is concerned with the data fusion aspects of a crowdsourcing workflow for generating urban SA. Two of the main considerations in this regard are the heterogeneity of the data both in terms of its type (hard and soft) and its level of trust and uncertainty. Only the type heterogeneity issue will be considered here.

B. Crowdsourcing and Urban SA

There are many examples of crowdsourcing approaches being used to generate large amounts of both hard and soft data from human reporters, for applications closely related to SA.

Hard data collected by crowdsourced reporters has been aggregated to improve estimates in radiation levels [5], while DARPA have carried out experiments that have shown crowdsourcing can be used to locate objects across the mainland US [6], and people globally [7], in a matter of hours.

SA has been improved in disaster relief through soft crowdsourced data. Ushaidi, initially developed to map reports of violence in Kenya in 2008, provides a platform for users to submit soft text-based data that can used for crisis mapping [8]. A significant bottleneck is the need for volunteers to label and aggregate incoming data due to its subjective nature.

This paper provides a first proof of concept for the fusion of soft, categorical, crowdsourced data with conventional hard data sources applied to urban SA.

C. Hard/Soft Data Fusion

When data is generated by physical sensors and by crowdsourcing, its combination will likely require a hard/soft data fusion framework. Previous work, although not directly framed in the context of crowdsourcing, has focused on three main theoretical frameworks summarized below: Belief Theory, Random Set Theory, and Probability Theory

1) Belief Theory (BT): Dempster-Shafer BT provides rich measures of uncertainty that can capture the kinds of ambiguity and vagueness inherent in soft observations. Illustrative examples of its application to fuse hard and soft data for testing various propositions relating to object position and identity were presented in [9] and [10] respectively. However, there remain issues around whether BT can deal in a consistent way with the significant conflicts that are likely to arise in crowdsourced human observations.

2) Random Set Theory (RST): RST is a general mathematical framework for representing and computing hard/soft fusion problems. It has previously been used to fuse soft observation with and without hard data to both localize [11] and track an object [12]. RST requires parametric models to transform observations into random finite sets. This is not as flexible as nonparametric Bayesian models that can accommodate highly nonlinear (e.g. range-only) observations given an adequate supply of training data.

3) Bayesian Probability Theory (BPT): BPT is an axiomatic framework for data fusion and is the basis for established techniques such as particle filters for object tracking and Bayesian Networks for SA. More recently BPT-based machine learning has been applied to hard/soft data fusion test cases in the military [13] and bioinformatics [14] application domains. BPT can be used for flexible nonparametric modeling of soft data and combined with decision theory to allocate human effort in crowdsourcing [15]. In this paper a BPT approach is used.

III. Urban SA Example

A. System Description

A software system is currently under development for investigating the impact of soft data in urban SA. The aim of this system is to combine the noise and uncertainty present in real human responses with the methodical, flexible and repeatable experimentation available through simulation. Such a simulation approach allows the ground truth of the environment to be compared to the picture compilation possible through fusing human reports with simulated hard sensors.

The simulation system is designed to run offline with a human task force of workers recruited from a web service such as Amazon’s Mechanical Turk [16]. Accessing existing services such as Mechanical Turk enables the recruitment of a large number of people, in an on-demand manner, while also giving the requester an element of control over the type of data gathered through their choice of questions and user interface.

A top-level system diagram is displayed in Fig. 1. Under some payment scheme, based on performance validation, a worker is tasked to report on one of multiple simulated urban scenes running on an external web server. Each simulation is a short duration time slice from a longer contiguous simulation. The aim is to ensure: tasks are quick to complete; good coverage over the entire simulation time; overlapping reports on the same scene so the benefits of fusion can be exploited.

Fig. 2 displays a screenshot of the simulation window and the task input menu that will be presented to a worker who accepts a task. Focusing on a specific object, the workers are
tasked to provide input about its type, what it did, and where this happened. The worker can click on the simulation window to locate an event and choose from a set of menu options that describe the event, e.g. the size of an object { small, medium, big } and its mobility {accelerated, decelerated}, {turned left, turned right}. These soft observation preferences are then submitted to a report database for further analysis, such as hard and soft data fusion processing to derive SA.

It is envisaged that SA derived as a result of this system could be used to inform ‘pattern of life’ analysis for urban traffic flow or forensic studies of particular traffic incidents in applications such as smart cities and disaster management.

B. Data Fusion Test Case

The data fusion component of the system has been evaluated on a test case involving a single mobile object and simulated observation data (hard and soft). The aim of the test case was to prototype a novel combination of hard/soft data fusion algorithms and to motivate a future crowdsourcing experiment by demonstrating proof of concept.

In the test case a constant speed object moves along a network of roads. The roads are treated as lines with zero width. For tracking purposes, there was a known upper bound on the objects velocity of twice its constant value. Observation data was generated in the form of multiple simulated hard and soft reports. For evaluation purposes, four experimental set-ups were considered:

1) **Good hard sensor coverage**: Three hard sensors were dispersed along the roads. They were placed so that at least one sensor was able to detect the object at any time, i.e. the object was always within the maximum range of one sensor.

2) **Poor hard sensor coverage**: Only a single hard sensor was available. It detects the object at the start of the simulation but then the object moves out of range of the sensor.

3) **Good hard sensor coverage with periodic soft reports**: As for the first setup with the addition of soft reports.

4) **Poor hard sensor coverage with periodic soft reports**: As for the second setup with the addition of soft reports.

The simulated hard sensor reports are real-valued bearing-only observations of the object of interest. The observations are perturbed by zero-mean Gaussian random noise. The hard sensor is assumed to have a maximum range R_h, with the probability of detection PD given by

$$PD = 1 - r/R_h$$

where r is the absolute distance between object and sensor. For all the experiments, R_h was set to 200m. No false detections (clutter) were generated for the purpose of this evaluation.

The simulated soft sensor reports are discrete multi-categorical values for the range and bearing of the object with respect to a reference landmark. Each sensor provides one of 17 mutually exclusive and exhaustive soft location labels from the 16 range-bearing categories {‘near to’, ‘far from’} × {‘north’, ‘north-east’,…,‘north-west’} and the additional range-only category {‘next to’}. This work uses a model of noisy human responses without bias or deceit, and thus presents an initial baseline for fusion of crowdsourced data for situation assessment.

The observation data, along with (assumed known) geographic information about the road layout and the reference landmarks are then passed to the data fusion algorithms described in the next section.

IV. FUSION APPROACH

The BPT framework from Section II forms the basis of the data fusion approach. The desired output is an estimate for the posterior probability density function $p(X_k|H_{1:k}, S_{1:k})$ where: k is a discrete time index; X_k is the continuous random state vector of the object at time k; and $H_{1:k}$ and $S_{1:k}$ are the respective sequences of hard and soft data up to time k.

A. Prediction

In the urban environments of interest here, objects are usually constrained to move along road networks. A Bayesian estimator must be able to deal with the multi-modality of the probability distributions created by road intersections as well as the dynamic motion uncertainties arising from different road characteristics.

Here the multi-modality issue was handled with a Particle Filter (PF) [17]. The PF prediction was implemented using a constant velocity motion model with additive Gaussian noise. A relatively high variance in the noise element was used. This was an intentionally sub-optimal solution designed to challenge the fusion process when there were gaps between observations, even for the simplest test case of a constant velocity object on a straight road.

B. Hard Fusion

The hard fusion process is a conventional PF update for a noisy bearing-only sensor observation, followed by the application of road constraints.

Depending on the implementation details of the soft fusion algorithm (see below) it may be necessary to compact the particle representation of state into a Gaussian mixture model representation. This is commonly done by resampling the particles and applying a variational Bayesian procedure to...
infer the best fit model (including the number of mixture components) [18].

C. Soft Fusion

The soft fusion update at time \(k \) is given by Bayes’ Rule:

\[
p(X_k|H_{1:k}, S_{1:k}) \propto p(S_k|X_k)p(X_k|H_{1:k}, S_{1:k-1})
\]

A soft report \(S_k = j \) is an observed category for \(X_k \), where \(j \in \{1, \ldots, m\} \) and \(m = 17 \) for the test case since there are \(2 \times 8 \) soft range-bearing categories and 1 soft range-only category.

The first key issue is how to specify the likelihood model \(p(S_k|X_k) \). This is a function that maps the continuous state space variable \(X_k = x \) to discrete probabilities on the soft observation space. Following [17], a natural choice for ‘continuous-to-discrete’ mapping is the softmax function:

\[
p(S_k|X_k) = \frac{\exp(w_j^T x + b_j)}{\sum_{h=1}^{m} \exp(w_h^T x + b_h)} \tag{3}
\]

where \(w_j, w_h \in \mathbb{R}^n \) and \(b_j, b_h \in \mathbb{R}^1 \) are vector weights and scalar biases for classes \(j, h \in \{1, \ldots, m\} \), respectively.

The softmax parameters are learned from labeled training data using convex optimization procedures based on maximum likelihood (or MAP) estimation.

Training can be an expensive process, both in term of data volume and processing time, so constraints on the softmax model were enforced to ease the problem. These amounted to an assumption that given a state estimate, its bearing observation (relative to a landmark) is perfectly known, i.e. the soft reporters are able to locate the object in the correct octant of a circle around the landmark without error. Training therefore reduces to estimating the mapping between the state and the soft range observations.

The soft sensor model used in these experiments to train and test the softmax function had the following range categories: ‘next to’ (<100m, 100m ‘near to’ <200m, and 200m ‘far from’ <300m. A soft sensor with no noise will assign the ‘correct’ categorical label every time.

Noise was introduced to this model by perturbing the range measured by the soft sensor, between object and landmark, by zero mean Gaussian noise, with variance \(\sigma^2 \), leading to possible mis-assignment in the soft range category. In later experiments, this data will be created by real crowdsourced human observers.

To quantify the training data requirement, mean training curves for varying soft range noise levels were produced. Based on 50 simulation runs, these curves show the probability of correctly predicting unseen observation labels. Fig. 3a shows an example of the mean and variance in the classification probability across the 50 simulations when \(\sigma = 20 \). It can be seen that on average, with 10 training points per range category, the softmax model correctly predicts the correct range-bearing category approximately 90% of the time.

Fig. 3b shows the impact on the mean classification performance with increasing noise.

An example of a learned softmax function is shown in Fig. 3c This displays the probability contours of a learned softmax likelihood function along with the 10 samples of training data in each range category that were used to train it. This model was trained using \(\sigma = 0 \). Notice the ‘fuzzy’ boundaries between the categories. The degree of ‘fuzziness’ is controlled by the softmax weights. Also of note are the square edges between the different range categories. This means that even with infinite training data, and a noise free soft sensor model, the softmax function will not always correctly categorise the soft range. This is a limitation of the current approach, however, with a small amount of injected noise in the range data, or limited amounts of training data, the impact of this is minimal.

The second main issue is how to evaluate (2) given a softmax likelihood function (3) and a prior \(p(X_k|\cdot) \). The
simplest solution is likelihood weighted importance sampling (LWIS) [17], for which the new particle weights following a soft update at time k can be determined, up to a normalization constant:

$$
\tilde{w}_k^i \propto w_k^i \times p(S_k | x_k^i)
$$

This approach, while computationally convenient, is susceptible to inconsistent estimates in situations that drive many particle weights to near zero values. A more involved but robust approach, Variational Bayesian Importance Sampling (VBIS), has been developed in [19].

VBIS computes a reliable Gaussian mixture approximation to (2) via variational Bayesian importance sampling (VBIS). This treats all probability density functions over X_k as full Gaussian mixture models, compressing weighted particles after the hard and soft sensor update. This provides a consistent and compact representation of state and avoids potential issues with sample degeneracy.

Both LWIS and VBIS were applied in this investigation and found to perform very similarly. The results in the next section are therefore based on the simpler LWIS method.

V. RESULTS AND DISCUSSION

This section contains a selection of results for the test case outlined in Section III. First, an illustration of poor situation assessment is shown in Fig. 4a. This has arisen because the object has turned right at a road intersection, moving out of range of two hard sensors. The particle-based state estimate has propagated particles consistent with the possible multiple motion hypotheses given the known road layout. The consequence is the mean object position estimate is significantly displaced from the true object position.

A soft report is now received stating that the object is “near to” and “south east” of the upper landmark, as show in Fig. 4b. Probability contours are displayed for the learned softmax likelihood function. The soft report is fused with the current particle-based estimate and the impact is clear: an improved mean object position estimate and a reduction in the spread of particles (variance).

Detailed statistical performance analysis results are now presented for different combinations of hard and soft sensor updates. The results were obtained for the simple test scenario shown in Fig. 4c. A single object moves along a road next to which are situated 3 hard sensors. At any time step at least one sensor has the object within its range. A single landmark is used as the anchor point for periodic soft reports.

First, it is instructive to look at the estimate of one of the object’s position variables for a representative run of the simulator. This is shown in Fig. 5a for a situation in which there is poor hard sensor coverage with no soft reports. In this scenario, the target is within range of a hard sensor until time step $k = 100$, where the object moves beyond its range. There is a significant drift in estimated position relative to the true object position in this case.

The estimates for a situation in which there is again poor hard sensor coverage but periodic soft reports every 50 time steps are shown in Fig. 5b. The soft reports provide sufficient information to offset much of the drift that was evident in the previous case.

The statistical performance analysis was based on 20 Monte Carlo runs of the simulator, after which the root-mean-square position estimate of the object was calculated at each time step. First, the results for poor hard sensor coverage, with periodic soft reports were generated. This is shown in Fig. 5c, where the soft range noise was set to $\sigma = \{0, 20, 40\}$. Each softmax function was trained on 10 data points per range category, leading to a correct classification probability of approximately 95%, 90% and 80% respectively. The main impact of the noise can be seen when the object approaches the boundary between two soft range categories, which in this case occurred between the time steps 150 – 200, and 250 – 300. The noise has little impact when the object is located near the centre.
VI. CONCLUSIONS

Crowdsourcing applications raise interesting new challenges for data fusion researchers. The crowdsourced data from human reporters is likely to be of a soft type, of variable quality, and may not always be trustworthy.

This paper has focused on the soft aspect of crowdsourced data and shown how it can be fused with hard data to provide SA performance benefit when the coverage provided by hard sensors is poor.

Poor hard sensor coverage will typically be the case in urban environments, where sensing opportunities on objects are limited leaving gaps that human reporters may be able to fill to provide complete SA with a sufficient level of accuracy to reliably inform decision makers. This paper has considered multi-categorical soft reports in which an object’s range and/or bearing position were specified with vague descriptors such as ‘near to’ and ‘north east’ relative to a reference landmark.

Bayesian Probability Theory was applied to formulate the hard and soft data fusion problem for a mobile object on a road network. Prediction and hard data fusion were implemented with a Particle Filter. The likelihood of a soft report was modeled with a softmax function that was learned from labelled training data. Soft fusion was implemented via a likelihood weighted importance sampling (LWIS) approach.

Several aspects of this approach merit a more detailed analysis, including:
• When is it valid to apply geometric constraint assumptions to simplify training of the softmax function?
• What is the performance trade-off associated with learning an “average” likelihood model for a group of soft reporters rather than separate models for individual reporters?
• When does particle degeneracy become an issue? Can this be predicted so the most appropriate soft fusion algorithm (LWIS or VBIS) can be applied?
• What are the implications on performance of more complex object situations, e.g. multiple objects with data association ambiguity?

This paper has only provided a proof-of-concept that fusing soft reports from human sensors can improve urban SA. Its greatest limitation in this regard was the use of synthetic soft data. The next step is therefore to conduct a trial with real soft data generated by human observers recruited from Amazon Mechanical Turk. This expands the scope of the data fusion problem considerably.

The first additional challenge relates to the expected variability and quality of crowdsourced data. This aspect has been noticed for the Galaxy Zoo Supernovae application, a part of the highly successful Zooniverse family of citizen science projects [20]. Elsewhere this has been handled by a Bayesian classifier combination method with a dynamic component to track changes over time in individuals reporting confidence [21].

Related to the challenge of variable quality human reports is their degree of trustworthiness. This can be partly mitigated by aligning the rewards that are paid to human reporters with their performance. There are also computational trust models for representing trust and combining reports on the basis of their performance. There are also computational trust models for representing trust and combining reports on the basis of trustworthiness [22].

This paper has employed a Bayesian machine learning framework for hard and soft data fusion, but there may be circumstances when other frameworks for combining uncertain data are more advantageous. For example, when there are insufficient labelled data to accurately train a machine learning algorithm. The comparison of related fusion methods for the type of test problem explored in this paper is recommended as a possible test case for the International Society of Information Fusions Evaluation of Techniques of Uncertainty Representation Working Group.

In conclusion, crowdsourcing is a promising technology for improving urban SA and data fusion will be a core component of any solution. However, the real key to success will rely upon integrating data fusion with methodology and perspectives from other fields, in particular computer science and social systems science.

ACKNOWLEDGMENT

This work was jointly supported by the EPSRC funded Industrial Doctorate Centre in Systems (Grant EP/G037353/1) and BAE Systems. Thanks are due to Nisar Ahmed (Cornell) for providing software and advice on the VBIS soft fusion algorithm, and to Steve Reece (Oxford) and Gopal Ramchurn (Southampton) for useful comments.

REFERENCES