
Road User Tracking Using a Dempster-Shafer
Based Classifying Multiple-Model PHD Filter

Daniel Meissner, Stephan Reuter, Benjamin Wilking and Klaus Dietmayer
Institute of Measurement, Control, and Microtechnology

Ulm University
Ulm, Germany

Email:{daniel.meissner, stephan.reuter, benjamin.wilking, klaus.dietmayer}@uni-ulm.de

Abstract—Multi-object tracking requires appropriate motion
models to predict the objects’ states. In case of road user
tracking, objects with different motion characteristics have to
be concerned. Moreover, the motion characteristics and with
that the appropriate motion model depends on the object’s
class. In this contribution a classifying multiple-model probability
hypothesis density filter based on Dempster-Shafer theory is
proposed. The object class is estimated based on features of
the measurement as well as features of the estimated objects’
states. Furthermore, the transition probabilities between the
model modes are not static, but adapted with the estimated
class probabilities of each track. It is shown, that a single
multiple model filter is able to track multiple road users with
different motion characteristics. Additionally, the integration of
the Dempster-Shafer based classification in the filter framework
improves the object class estimation significantly. Finally, an
application of the filter on real world data of an intersection
perception system is presented.

I. INTRODUCTION

Urban intersections are a known black spot for fatal acci-
dents [1]. Since the introduction of passive safety systems,
the number of serious injured passengers inside a car de-
ceases, but pedestrians and two-wheeler are left with limited
protection. Latest German accident analysis [2] even show,
that the injuries of such vulnerable road users (VRU) at urban
intersections have been increased. Therefore active safety
systems and especially advanced driver assistance systems
(ADAS), which warn the driver early enough or even mitigate
accidents are on the rise. A major part of the joint project
Ko-PER which is part of of the research initiative Ko-FAS
[3], is to increase traffic safety at intersections based on
cooperative perception systems. Vehicles are equipped with
sensors to perceive their environment and share the perceived
objects and their ego position using vehicle-to-vehicle (V2V)
communication. But, due to a generally high traffic density and
complex topology at urban intersections, the communication
and the field of perception bandwidth are restricted. Thus, a
perception system which provides a occlusion free birds eye
view of the intersection area has been installed at three test
intersections in Germany. One of these is a public intersection
in Aschaffenburg, Germany with a medium traffic volume
of 22, 000 to 23, 000 vehicles per day. The perception and
object recognition is base on a network of 14 SICK LD-MRS
research multilayer laserscanners mounted at infrastructure
components, like lampposts and traffic lights at least four

Fig. 1. Aligned range data (beam intersections with the floor) of the 14
installed laserscanners depicted in orange.

meters above street level. In Figure 1 a 3D model of the
intersection and a visualization of the aligned laser range data
is shown. The system detects all road users in the intersection
area, classifies the classes pedestrian, bike, car, and truck
and estimates their pose, velocity, and dimension. The object
information is finally broadcasted to vehicles which can fuse
it in their environment perception to achieve a significant
extension of their environment information.

A. Problem addressed

The key for a system assisting the driver on its way
through an intersection lies in reliable road user recognition
and tracking. To cover the variety of different objects and
their motion behavior a multiple-class and multiple-model
filter - the Classifying Multiple-Model Probability Hypothesis
Density (CMMPHD) filter - is presented. The system has
to deal with two major challenges: First, the classification
task can not be solved using just class specific features of
the measurements and second, the used filter has to support
multiple process models to model the objects motion. To solve
the first challenge measurement based features as well as track
specific features are used. Furthermore we allow uncertain
classification decisions. For instance, consider the maximum
velocity of a track, which will later be introduced as a track
feature, is 1 m/s. In this case all classes are possible, because
all distinguished classes can have this velocity. But if the



feature value is 20 m/s, it is very unlikely that the track is
a pedestrian. In contrast to Bayes, the Dempster-Shafer theory
of Evidence (DST) [4] explicitly allows an undecided state
of our knowledge [5]. On the other hand Koks states in [5],
that Dempster-Shafer calculations are more complex than their
Bayes’ analogues. Thus, in this work the classification based
on measurement features is done using Bayes’ theorem. In
the measurement model of the tracker, the class probabilities
are used as focal elements of a measurement specific basic
belief assignment (BBA) according to DST. Additionally, each
track holds a BBA which is updated with the BBA of the
measurement in each filter cycle. The track specific BBA
enables the representation of the state of being undecided and
the fusion of track feature BBAs. A brief introduction to the
DST is given in Section II.

The second challenge is tackled using a filter which is based
on the Jump Markov Probability Hypothesis Density (JMPHD)
filter introduced by Vo et al. [6] and theoretically reasoned
by Mahler [7]. Instead of modelling the different motion
states of an object (e.g. left turn and right turn), we use the
multiple model modes to represent the motion characteristics
of different object classes. Most apparent is the diversity of
motion characteristics in case of pedestrians and vehicles. Due
to its agility, the motion direction of pedestrians is assumed
to be independent of its orientation. On the other hand, the
motion of vehicles is modeled using a single track model
in which the motion direction and orientation are coupled.
This Gaussian Mixture Multiple Model PHD (GM-MMPHD)
filter has already been introduced in [8] and [9]. In the GM-
CMMPHD filter the Markovian transition matrix between the
model modes is dynamic. It is demonstrated, that the elements
of the transition matrix can be adapted using the current BBAs
of the track. Even though the Gaussians of the GM-PHD do
not mandatory represent a single track, they are used this way
in this work. Due to the used merging method, it is very
unlikely to have more than one object represented by one
Gaussian component.

The remainder of this paper is organized as follows: In
Section II a brief introduction to DST is given. Subsequently,
the used methods to detect and classify moving objects is
summarized in III and in IV the GM-MMPHD filter is
reviewed. In Section V the extension of the GM-MMPHD
filter to classify tracks using the DST is introduced. Finally, the
performance of the GM-CMMPHD filter in terms of tracking
and classification is demonstrated based on real world data of
the public intersection.

II. DEMPSTER-SHAFER THEORY OF EVIDENCE

This section gives a brief introduction to the basics of
the Dempster-Shafer theory of evidence (DST) [10]. Further
informations about the DST can be found for example in [5],
[11] and [12]. The DST itself is a more general formulation
of the probability theory. All following equations are valid for
probability functions as well. Among others, the DST is used
in research on classification and sensor data fusion [13].

In DST, a set of elementary hypotheses ai called frame of
discernment Ω is defined:

Ω = {ai}, i = 1, . . . , n (1)

The elementary hypotheses have to be disjoint and are required
to cover the complete event space. To get a mapping from the
power set 2Ω to the interval [0, 1] a basic belief assignment
(BBA) m is defined as:

m(∅) = 0, (2)∑
A⊆Ω

m(A) = 1. (3)

Thus, the mass m(A) can be interpreted as the certainty of
the proposition A to be correct. Consequently, it is possible
to make propositions about disjoint unions of elementary
events. Although it is not essential for the DST that BBAs
are measurements of certainty, in this work only probability
functions are used as BBAs.

A BBA is called a Bayesian BBA if all focal elements are
elementary elements. A focal element is a subset A of Ω with
m(A) > 0. In case of only one focal element, the BBA is said
to be categorical and a Bayesian BBA with exactly two focal
elements is said to be binary.

Using the Dempster-Shafer rule of combination two BBAs
m1 and m2 can be fused as follows:

m1⊕2(A) = m1(A)⊕m2(A)

=

∑
X∩Y=A

m1(X)m2(Y )

1−
∑

X∩Y=∅
m1(X)m2(Y )

∀A ∈ 2Ω.
(4)

The denominator represents a normalization of the resulting
BBA if the BBAs are partly contradictory. A contradiction
means, that in BBA m1 exists at least one proposition X with
m1(X) > 0 which is not compatible to any proposition in
m2. It can be shown, that the combination rule above equals
the Bayes rule in case of binary BBAs.

The support for the proposition A of the BBA m is called
the degree of belief Belm(A) with:

Belm(A) =
∑

B⊆A,B 6=∅

m(B). (5)

The sum of all BBAs of m not contradicting A are referred
as the plausibility Plm(A) with:

Plm(A) =
∑

B∩A6=∅

m(B). (6)

Thus, the uncertainty interval Um(A) is defined as:

Um(A) = Plm(A)−Belm(A). (7)

The uncertainty is a measure of how exact the proposition can
be expressed using the BBA. Figure 2 shows a visualization
of belief, plausibility and uncertainty.

In order to make a decision, a BBA can be interpreted in a
pessimistic and an optimistic manner. Here, the belief Belm
can be used as the pessimistic and the plausibility Plm as the
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Fig. 2. Belief, plausibility and uncertainty of a BBA

optimistic guess, but there is also additional information in the
uncertainty Um of every proposition. Thus, the BBA needs to
be transformed into a probabilistic function in order to make
decisions. One method to do this is the pignistic transformation
[12]:

BetPm(A) =
∑
B⊆Ω

|A ∩B|
|B|

m(B) (8)

where |·| denotes the number of elementary hypotheses of Ω
in ·. Since there is no information about the distribution of
the probability mass of every A the mass of A is equally
distributed on all elements of A. As already mentioned,
BetPm can be bounded by a pessimistic and an optimistic
guess:

Belm(A) ≤ BetPm(A) ≤ Plm(A). (9)

If there is only a certain level of correctness of a BBA this
level can be expresses as a probability α. This probability can
be used to discount a BBA prior to combination with another
BBA. The discounted BBA mα is defined as:

mα(A) =

{
αm(A), A 6= ∅
1− α+ αm(Ω), A = Ω

. (10)

III. MOVING OBJECTS DETECTION AND CLASSIFICATION

The input of the multi-object filter are measurements of
the objects at the intersection. As described in Section I,
each measurement consists of its pose, dimension, and class
probabilities. To determine these values, the first step is to
classify the measurement points of the sensors in background
measurements, reflected from static, not moving objects and
foreground measurements, reflected from dynamic, moving
objects. Therefore, a statistical background model which ex-
ploits, that the mounting position of the sensors is fixed is
used. Subsequently, the foreground measurements are clus-
tered using a grid-based density-based spatial clustering for
applications with noise (DBSCAN) algorithm and passed to
the object classification. For further details about the object
detection refer to [14] and [15]. The classification is based on
point cloud features of the detected objects. A naive Bayesian
classifier classifies the point clouds in pedestrians, bikes, cars,
and trucks. Due to the marginal difference in the features
of pedestrians and bikes, its hard to distinguish them based
on static features. The popular method to extract the lags of
pedestrians ([16], [17]) is not applicable here, since the laser-
scanners’ perspective is from above. Obviously, the dimension
of the objects is a strong feature to distinguish the classes.
But, due to occlusions and the perspective of the sensors the

system sometimes detects just parts of an object. In case of
partly detected objects the dimension feature is ambiguous.
Therefore, additional features have been determined to enable
a robust and reliable classification in the perception area of the
system. The following features figured out to be significant:
• Absolute x, y, and z value of the major axis of the point

cloud
• Norm of the object dimension in x − y-plane which is

parallel to street surface
• Height of the point cloud from street surface
• Standard deviation of the euclidean point to point dis-

tances in a point cloud
The features are calculated as in [18].

Now the class probabilities P (zj)
C,k of the jth cluster can be

calculated using Bayes’ theorem:

P
(zj)
C,k =

[
p(c1|F )(zj), . . . , p(cNC

|F )(zj)
]T

(11)

p(cj |F )(zj) =

p(cj)
L∏
l=1

p(fl|cj)(zj)

NC∑
j=1

(
p(cj)

L∏
l=1

p(fl|cj)(zj)

) (12)

Here F is the union of all L independent features fl (l =
1, . . . ,K) of the cluster zj and C represents the NC ob-
ject classes cj (j = 1, . . . , NC). The feature probability
distributions for each class p(fl|cj) can be arbitrary and
are approximated using Gaussian mixtures. The training set
consists of a large number of manually labeled real world
sensor data. The a priori class probability p(cj) is region based
and determined by means of the labeled data. To complete the
measurement, the pose and dimensions are calculated from the
point cloud of the cluster.

IV. THE GM-MMPHD FILTER

The aim of the filter is to estimate the number of objects and
their states based on the measurements described in III. Since
the number of objects as well as the object states are random
variables, the multi-object state Xk of Nk objects to time k
and the multi-object measurement Zk are represented by a
random finite set (RFS) [19]. This leads to the multi-object
Bayes filter [19] to solve the tracking problem. The multi-
object Bayes filter is in general computationally intractable,
therefore the GM-PHD approximation is used [20], which
propagates only the first moment of the multi-object state over
time. To incorporate the motion characteristics of the road
users a linear constant velocity model for pedestrians and a
nonlinear single-track model for all other road users is used
within the GM-MMPHD filter of [9]. The filter is summarized
in the following.

The multiple-model filter additionally estimates the
multiple-model mode o to each track which requires an
extension of the multi-object state [7].

Ẍ = {ẍ1, . . . , ẍN} = {(x1, o1), . . . , (xN , oN )} (13)

The extended multi-object state is represented by Ẍ . As-
suming a Gaussian measurement and process noise, [20]



introduced a Gaussian mixture approximation of the PHD-
filter, which itself is a computational tractable approximation
of the multi-object Bayes filter. In [6] the GM-PHD filter is
extended to multiple-model systems. Here, the a posteriori
PHD vk−1 is assumed to be a Gaussian mixture of the form:

v′(ẍ) =

J′(o′)∑
i=1

w′(i)(o′)N
(
x;µ′(i)(o′), P ′(i)(o′)

)
(14)

For readability reasons all variables to time k− 1 are marked
with the superscript ′. With (14) the predicted PHD is a GM,
too:

vk|k−1(ẍ) =
∑
o′

Jk|k−1(o′)∑
i=1

w
(i)
k|k−1(o|o′) (15)

N
(
x;µ

(i)
k|k−1(o|o′), P (i)

k|k−1(o|o′)
)

The weights of the predicted Gaussian components

w
(i)
k|k−1(o|o′) = pS,k|k−1(o′)t

(i)
k|k−1(o|o′)w(i)

k−1(o′) (16)

are calculated by the multiplication of the a posteriori weight
w

(i)
k−1(o′) with the survival probability pS,k|k−1(o′) and the

transition probability t
(i)
k|k−1(o|o′) of the model mode. In

contrast to common multiple-model approaches, in this work
the transition matrix is not constant. It is adapted by means
of track specific class BBAs, which is described in Section
V-B. The mean m

(i)
k|k−1(o|o′) and covariances P (i)

k|k−1(o|o′) of
the GM components are predicted using the process matrix
Fk−1(o) and process noise Qk−1(o) of the motion model o:

µ
(i)
k|k−1(o|o′) = Fk−1(o)µ

(i)
k−1(o′) (17)

P
(i)
k|k−1(o|o′) = Qk−1(o) + Fk−1(o)P

(i)
k−1(o′)Fk−1(o)T (18)

In (15) the sum over all permutations of the model dependent
GMs is calculated and the weights are multiplied with the
transition probability to predict the PHD function. This models
the interaction between the models. An unscented transforma-
tion is used to transform the state and covariance between the
motion models [9].

The innovation of the PHD is calculated on the lines of the
standard GM-PHD filter.

vk(ẍ) =(1− pD,k(o))vk|k−1(ẍ)+∑
z∈Zk

Jk|k−1(o)∑
i=1

w
(i)
k (o; z)N

(
x;µ

(i)
k (o, z), P

(i)
k (o)

)
(19)

The first term of (19) represents the case that a target was
not detected. Therefore, the a priori intensity vk|k−1(ẍ) is
weighted with the probability of a missed detection (1 −
pD,k(o)). The second term of (19) represents the creation of
|Zk| new Gaussian mixtures for each of the predicted tracks
according to (20) and (21), where |Zk| is the number of

received measurements.

w
(i)
k (o; z) = (20)

pD,k(o)w
(i)
k|k−1(o)q

(i)
k (o; z)

κk(z) +
∑
o pD,k(o)

∑Jk|k−1(o)

i=1 w
(i)
k|k−1(o)q

(i)
k (o; z)

q
(i)
k (o; z) = N

(
z;Hkµ

(i)
k|k−1(o), HkP

(i)
k|k−1(o)HT

k +Rk

)
(21)

κk(z) models the intensity of the multi-object clutter process.
Since the point of the GM-MMPHD filter is to more accurately
estimate the object states, it is unnecessary to know the current
motion model o. Thus, according to [7], it is marginalized over
o to get the PHD of the objects alone:

vk(x) =
∑
o

vk(ẍ) (22)

To set up new tracks a measurement driven birth model is
used ([13], [21]). As already mentioned, it is not mandatory
that each Gaussian represents a track. But in this application
the merging method of the GM is designed to avoid the
representation of multiple tracks with one Gaussian. Thus,
Gaussians with a weight greater 0.5 can contribute tracks to
the track set according to [22].

V. DEMPSTER-SHAFER BASED CLASSIFYING
GM-MMPHD FILTER

Beside the multi-object state, also the class probabilities or
class BBA of the tracks are interesting. Thus, the desired a
posteriori probability distribution consists of the extended state
Ẍk and the class BBAs MC :

p(Ẍk,MC |Zk) = p(MC |Ẍk, Zk)p(Ẍk|Zk) (23)

with

MC =
{
m

(1)
k , . . . ,m

(N̂k)
k

}
. (24)

Due to its assumed independence, the state and class can
be estimated sequentially. Starting with the estimation of the
multi-object state Ẍk, just the class BBAs of the estimated
number of objects N̂k have to be concerned. In this work the
classifying GM-MMPHD filter is used to track road users.
Thus, the frame of discernment is

Ω = {B,C, P, T}, (25)

with bike (B), car (C), pedestrian (P ), and truck (T ). In order
to estimate the class BBA of the tracks based on measurement
and track features as well as to adapt the transition probabili-
ties of the multiple model modes, a BBA is attached to each
Gaussian component of the GM. Hence, according to [8] and
[9] each distribution is represented by a triple{

w(i),N
(
x, µ(i), P (i)

)
,m(i)

}
. (26)



A. Using BBAs for Track Classification

A major advantage of PHD filters is the missing explicit data
association step. Unfortunately, object classification is often
based on features which are calculated from the raw sensor
measurements. So an association of the measurements and the
tracks is needed. Due to that, classification results strongly
depend on the feature quality in the current measurement. To
reduce this dependency the classification result is filtered over
time.

1) BBA of Measurement Features: Therefore the Bayesian
class probabilities introduced in Section III are used as focal
elements of a class BBA of the measurement as follows:

m
zj
k (B) = p

zj
k (B|M) (27)

m
zj
k (C) = p

zj
k (C|M) (28)

m
zj
k (P ) = p

zj
k (P |M) (29)

m
zj
k (T ) = p

zj
k (T |M) (30)

Now the a posteriori BBA can be updated with the BBA of the
measurement easily by using DST fusion (4) and discounting
(10):

m
(i)
k = m

zj
k|k−1 ⊕

(
m
zj
k

)pLP (31)

Here
(
m
zj
k

)pLP is the BBA of measurement zj discounted
with the parameter pLP � 1 which acts as a low pass filter.
Additionally, the BBAs have to be predicted in order to ensure
that the BBA does not focus on one hypothesis. This is also
done by discounting. In case of missed detections the weight
of the Gaussian is decreased by the GM-MMPHD filter (19)
and in the next prediction the mass is shifted towards Ω by
discounting. Thus, missed detections do not require explicit
handling.

2) BBA of Track Features: After the estimation of the multi-
object state, features of the track can be used to improve the
classification performance. As already motivated in Section I,
there are no characteristic measurement features to distinguish
a bike and a pedestrian or the front of a car, but they strongly
differ in their maximum velocity. For a low maximum velocity
all classes are possible, so the mass of the BBA for Ω is
high and the class specific masses are low. If the maximum
velocity raises, the probability for the track being a pedestrian
decreases which is represented with a decrease of the mass
assigned to the proposition BCPT and an increase of BCT ,
and so on. The distribution of the masses is shown in Figure
3(a). The new BBA, based on the mass curves in Figure 3(a)
is calculated and fused with the BBA of the track.

Additionally, track features improve the classification per-
formance even in the case of sparse, cluttered and split mea-
surements of an object which prevents a reliable classification
using measurement features. Thus, the estimated length, width,
and height of the tracks showed significance. The masses of
the BBA for the height is depicted in Figure 3(b). The length
and width features are just used in the central part of the
intersection. Here the perception system is in general able to
detect the whole object, thus the estimated object dimension
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Fig. 3. Masses of the BBA for the maximum velocity (a) and height (b) of
the tracks.

can be compared to common dimensions of the classes. Based
on the estimated yaw angle of the objects, the length and
width features of the tracks are more reliable than those of
the measurements.

To make a decision about the object class, the BBA of
the Gaussian has to be transformed to probabilities for the
considered classes using (9). Finally, the class with the highest
probability is chosen:

c
(i)
k = argmax

j
BetP

(i)
k (cj) (32)

B. Using Track BBAs to Adapt Transition Matrix

The model modes represent the motion characteristic of
different object classes, so the transition matrix of each track
depends on its class probability. In case of road user tracking
two object classes which have completely different motion
principles have to be considered. On the one hand pedestrians
and on the other hand bikes and vehicles. Pedestrians are
very agile and their direction of motion is independent of
the orientation (can move sidewards). Therefore, a constant
velocity point model is used. All other road users, here bikes,
cars, and trucks have constraints in their motion ability, which
is commonly modeled using a nonlinear constant velocity
single track model [13]. By linearizing the single track model
according to the extended Kalman filter, the equations intro-
duced in Section IV can be used for both models. Thus, the
model transition matrix Tk|k−1 is 2 × 2 and depends on the



pignistic probabilities of the track BBAs for P and BCT :

T
(i)
k|k−1 =

[
BetPm(P )(i) BetPm(BCT )(i)

BetPm(P )(i) BetPm(BCT )(i)

]
(33)

VI. RESULTS

For characterization of the tracking and classification perfor-
mance real time capable implementations of the GM-MMPHD
and the GM-CMMPHD filter are applied on a real world
sequence of the public test intersection in Aschaffenburg.
Since a huge number of road users crosses the intersection
during the sequence, Figure 4 depicts just some exemplary
tracks of the GM-CMMPHD filter. Obviously, all shown road
users are tracked persistent and with smooth trajectories across
the intersection. It is conspicuous, that the course of the
pedestrian’s trajectory is not as smooth as those of the other
classes. This is due to the multiple model structure of the filter
and shows the agility of the pedestrian which is tracked with a
linear CV model. For the other classes a nonlinear single track
CV model is used. For the perception system just the three
observed approaches Figure 1 to the intersection are relevant.
Since the egresses of the intersection are hardly in the field of
perception, some tracks are lost. Moreover, Figure 4 shows a
reliable classification of the road users.
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Fig. 4. Exemplary GM-CMMPHD filter tracks of one bike, pedestrian and
truck respectively as well as three cars.

Especially in case of bike classification the advantage of
the Dempster-Shafer based GM-CMMPHD filter becomes
apparent. Thus, Figure 5 contrasts the probabilities of the three
most likely bike track classes of the GM-MMPHD (Fig. 5(a))
and the GM-CMMPHD (Fig. 5(b)) filter. The GM-MMPHD
filter, which does not use track features, is not able to classify
the bike correctly. Due to the week feature differences of
pedestrians, bike, and cars and the hard decisions of the
Bayes classifier, the track is mostly recognized as car. On

the contrary, the filter with track features (GM-CMMPHD)
in Figure 5(b). Here the classification is mostly correct. Due
to the the track features, giving mass to classes and their
combinations enabled by DST, the bike can be distinguished
from the other classes.
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Fig. 5. Probability values of the three most probable classes of the bike
track in Figure 4 crossing the intersection. (a) is the result of the filter without
(MMPHD) and (b) with track features (CMMPHD).

VII. CONCLUSION AND FUTURE WORKS

In this contribution, an approach to use Dempster-Shafer
Theory to integrate measurement and track features for road
user classification into a GM multiple-model probability den-
sity filter framework has been proposed. In order to estimate
the class probabilities of the tracks, a BBA is attached to
each Gaussian component of the GM. Class probabilities
are calculated to each measurement using a Bayes classifier.
With the class probabilities as focal elements, BBAs of the
measurement are generated and fused with the BBA of the
tracks in each filter cycle. Moreover, class BBAs based on
track features - the estimated maximum velocity, the height,
as well as the length and width - are incorporated. The
results show, that the filter with track features outperforms
the filter without track features in terms of classification.
Thus, the approach enables to classify the road users in bike,
car, pedestrian, and truck. Furthermore, additional features
and classes can be added easily, due to DST representation.



Subsequently, the proposed multiple-model approach enables
the tracking of road users with their appropriate motion models
using a single filter. In contrast to common MM filters, in this
work the transition matrix is not constant, but adapted based
on the estimated class probabilities. Thus, is is shown, that the
filter is able to model the agility of pedestrians as well as the
smooth trajectories of bikes, cars, and trucks.

In future, a multi-sensor GM-CMMPHD filter which in-
tegrates also the measurements of a camera system at the
intersection is planned. Moreover, the proposed DST based
classifying multiple-model approach will be integrated in
multi-target multi-Bernoulli filters.
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