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Abstract - Reasoning about military situations requires a 
scientifically sound and computationally robust 
uncertainty calculus, a supporting inference engine that 
procedurally encodes the axioms of the calculus, the 
capability to fuse information at multiple levels of 
abstraction, and the ability to respond to dynamic 
situations. The inference engine also needs to be able to 
encapsulate expert knowledge, including deep human 
doctrinal and domain knowledge. At Information 
Extraction & Transport, Inc. (IET), we have developed 
techniques to encode domain and doctrinal expertise in 
reusable knowledge chunks, based on the technology of 
Bayesian Network Fragments, and the capability to 
automatically construct situation specific Bayesian 
Networks based on a combination of top down control and 
bottom up evidence-driven processes. These techniques 
have been used to prototype fusion systems capable of 
reasoning about uncertain numbers of uncertain 
hierarchically organized entities based on incomplete 
observations. These systems have demonstrated success in 
generating force level situation hypotheses from vehicle 
tracks and other evidence generated by level 1 fusion 
systems. This paper presents an overview of our technical 
approach with applications from recent projects. 

Keywords: Bayesian Networks, multi-entity Bayesian 
Networks, situation assessment, hypothesis management 

1 Introduction 
Military situation assessment requires reasoning about an 
unknown number of hierarchically organized entities 
interacting with each other in varied ways.  The entities 
are observed by various sensors, which generate sensor 
reports or feed level 1 fusion systems that generate 
estimates of various attributes of the entities. In general, 
these reports cannot be unambiguously associated with the 
domain entities generating them.  For example, in ground 
combat scenario, level 1 fusion systems generate a stream 
of tracks, or tracklets, with likelihoods for vehicle types 
and activities.  This evidence stream is subject to errors –  
including missed detections, false alarms, misassociation, 
misclassification.  This paper describes IET’s approach 
for processing this kind of errorful evidence stream to 
generate a situation assessment. 

1.1 Organization 
Section 2 provides an overview of the application of 
Bayesian Networks (BNs) and Bayesian Network 
Fragments (BNFrags) to information fusion, and 
introduces our BN inference engine.  Section 3 introduces 
Multi-Entity Bayesian Networks (MEBNs), a 
specialization of BNFrags. Section 4 introduces 
hierarchical models for classification, and section 5 
presents the technology of situation specific network 
construction, hypothesis management, and evaluation.  
Section 6 provides a summary of an example from a 
recent research program.   

2 Bayesian Networks for 
Information Fusion 

A BN represents the probabilistic dependencies among a 
set of random variables by a directed acyclic graph [1]. 
Each node in the network represents a random variable 
with a set of defined states that together typically 
represent a set of mutually exclusive and exhaustive 
possible values for some hypothesis. A node in a BN is 
conditionally independent of all non-descendant nodes 
given its direct parents. Each node in the network stores 
its probability distribution given its direct parents and any 
evidence that has been observed concerning the node.  
This information is sufficient to implicitly represent the 
full joint probability distribution over all random variables 
in the network, as well as the conditional joint distribution 
given observed evidence about some nodes in the 
network.  

The knowledge required to construct the BN can be 
learned from existing data, can be defined by known 
functional relationships, by elicitation from human 
experts, or by any combination of the above. 

2.1 Bayesian Network Fragments 
The vast majority of published applications of BNs consist 
of template models.  A template model is appropriate for 
problem domains in which the relevant variables, their 
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state spaces, and their probabilistic relationships do not 
vary from problem instance to problem instance. Thus, 
generic knowledge about the domain can be represented 
by a fixed BN over a fixed set of variables, obtained by 
some combination of expert judgment and learning from 
observation. Problem solving for a particular case is 
performed by conditioning the network on case-specific 
evidence and computing the posterior distributions of 
variables of interest.   

For example, a medical diagnosis template network would 
contain variables representing background information 
about a patient, possible medical conditions the patient 
might be experiencing, and clinical findings that might be 
observed. The network encodes probabilistic relationships 
among these variables. To perform diagnosis on a 
particular patient, background information and findings 
for the patient are entered as evidence and the posterior 
probabilities of the possible medical conditions are 
reported.  Although values of the evidence variables vary 
from patient to patient, the relevant variables and their 
probabilistic relationships are assumed to be the same for 
all patients.  It is this assumption that justifies the use of 
template models. 

The development of efficient belief propagation 
algorithms for template models enabled an explosion of 
research and applications of probability models in 
intelligent systems[1, 2]. As BN technology is applied to 
more complex problems, the limitations of template 
models become apparent. Even when a domain can be 
represented by a template model, its size and complexity 
may make it necessary to represent it implicitly as a 
collection of modular subunits [3].   

It is clear that a template model is inadequate for any type 
of military situation assessment. The number of actors of 
any given type is not static, but varies from situation to 
situation. A reasoning system must be capable of unifying 
reports with already-hypothesized units and/or 
hypothesizing new units, as the context for the current 
problem demands. The relevant variables for reasoning 
about an actor depend on the actor’s type. For example, 
the mode in which a radar emits is a key variable for 
inferring the activity of a surface-to-air missile battery.  
However, this variable is not applicable to units that have 
no radar. Clearly, a network with a fixed set of variables 
and a fixed topology is inadequate for this problem.  

To address this issue, IET has pioneered research that 
supports the decomposition of complex models into 
conceptually meaningful and manageable pieces called 
BNFrags [4].  Opportunities for decomposition and reuse 
occur when families of variables share the same sets of 
possible values, when sets of related variables have a 
common structure and when possible variables, values and 
conditioning relationships can be parameterized.  
Structural and parametric regularities also occur within 

the conditioning distributions of BN.  Network fragments 
represent shared elements of a probabilistic knowledge 
base.  Each network fragment contains probabilistic 
knowledge about a small set of random variables.  
Moreover, a network fragment may represent only a 
portion of a conditional probability distribution for a 
variable given its parents.  Model specification, model 
maintenance, and communication are facilitated if models 
are specified as network fragments. 

Patterns of entity structure, behavior and relationships can 
be encoded as fragments of BNs [4].  A knowledge base 
consisting of a set of BNFrags that encodes human 
expertise and domain knowledge can provide the building 
blocks for assembling a situation specific BN.  

The ability to select and combine the right BNfrags to 
build the appropriate BN for the specific inference 
requires a powerful BN inferencing engine. 

2.2 The IET Inference Engine 
Over the last decade IET has continuously built and 
improved the inferencing technology we use to model 
complex, real world problems. Figure 1 shows the current 

IET inferencing components.  

Java Symbolic Probabilistic Inferencing (JSPI) Engine 
is based on the IET’s SPI algorithm[5]. It is one of only 
two known general solution algorithms for BNs.  In 
contrast to the alternate “join tree” approach to inference 
in BNs, SPI has the following two important 
characteristics.  First, SPI is query based. SPI extracts the 
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JPF / JSPI

• JAVA Probabilistic Frames (JPF):
Capability to manipulate / reuse
network fragments

• JAVA Symbolic Probabalistic
Inferrencing (JSPI):  Propagate
Uncertainty In Bayesian Networks  

Figure 1.  IET Inference Engine Components 
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minimum subset of a BN that is necessary for each query, 
minimizing the amount of computation required for 
answering the query. This is important because the same 
query can be repeated many times for different points 
within the area of interest. Second, SPI has local 
expressions, an extension of BNs, used to express local 
structure within a node.  Local expressions can be used to 
instantiate many independence relationships including 
independence of causal influences and context-specific 
independence. SPI exploits these independence 
relationships in addition to the conditional independences 
inherent in BNs for efficient inference in large BNs. SPI 
has successfully computed queries for large “bench mark” 
BNs, which the join-tree inference algorithm is unable to 
compute in reasonable time. In addition, SPI's query-
oriented approach allows for compilation of any 
probabilistic query into an efficient and small procedural 
code.  Because both the memory and CPU requirement of 
this generated code is fixed; it is readily usable in an 
embedded and/or real-time environment.  

IET's JAVA Probabilistic Frames (JPF) is a knowledge 
representation language based on frames (a widely used 
knowledge representation in Artificial Intelligence) 
augmented in various ways to express uncertainties.  In 
addition to frame (class) abstractions organized by “is-a” 
hierarchies inherited from the frame system, JPF supports 
mechanisms to express uncertainties about the value of 
variables, the reference to instances, the existence of 
instances, and the type of instances.  JPF allows for 
expressing domain knowledge as pieces of BNs (or 
network fragments) in a modular and compact way, 
facilitating reuse.  Instances of probabilistic frames are 
created dynamically for each instance, allowing situation 
specific probabilistic inference. The probabilistic 
inference is done by JSPI using a BN created dynamically 
from the current set of probabilistic frame instances.  This 
generation of BNs from JPF utilizes JSPI's local 
expressions to exploit all types of independence 
relationships to speed up the inference.   

JSPI Script is an object-oriented scripting language 
designed specifically for BN applications. It provides full 
access to all the functions of JSPI and JPF. It can be used 
to dynamically construct BNs, make situation-specific 
queries, and define and replace software components on 
the fly. In addition, the JSPI Script language can be run 
interactively from a command line, or can be used via an 
API from within a larger software system - allowing 
automated control over construction and manipulation of 
BNs. 

3 Multi-Entity Bayesian Networks 
An MEBN is a collection of BNFrags that satisfy 
consistency criteria such that the collection specifies a 

probability distribution over attributes of and relationships 
among a collection of interrelated entities. An MEBN 
implicitly encodes a probability distribution over an 
unbounded number of hypotheses. For any given problem, 
only a finite subset of these hypotheses will be relevant. A 
formal theory for MEBNs is under development [6].  

MEBN logic extends standard BNs to allow the kind of 
replication and combination needed to reason about 
complex problems in which variable numbers of entities 
interact in varying ways. Implicitly encodes a joint 
probability distribution over object-level domain entities.  
Augmented with an ontology for higher-order probability, 
MEBN also implicitly specifies higher-order distributions 
and supports learning.    MEBN can serve as both object 
language and meta-language. When extended to a Multi-
Entity Decision Graphs (MEDG), the approach also can 
support trading off computation against accuracy and/or 
utility for decision making and resource allocation. 

MEBNs are to regular BNs what algebra is to arithmetic. 
If all we have is arithmetic, to figure out how much carpet 
to buy for an arbitrary room requires a huge table that lists 
lengths, widths and the area corresponding to every 
possible length and width (or an instruction to fill in the 
blank by multiplication). With algebra we can write a 
single equation a = l x w, and represent the table in one 
line.  

Similarly, if all we have is BNs, and there are M months 
of data with N variables per month, we must build a BN 
with MxN nodes, and fill in identical arcs and local 
probability distributions at each time step. With MEBNs, 
we can write a single BNFrag relating the variables at 
time t with the variables at time t+1 and say "repeat for all 
t's." Similarly, we can relate a vehicle’s type to the type of 
the unit it is a member of and say "repeat for all vehicles 
in a unit, and then repeat for all units." Standard 
implementations of BNs do not provide this capability.  

4 Hierarchical Models 
BNFrags and MEBNs provide the structure for building 
the knowledge base. But the knowledge base must capture 
knowledge about the problem domain. In a military 
ground combat domain the knowledge is typically 
organized hierarchically. To build the knowledge base we 
define BNFrags that correspond to knowledge chunks at 
different levels of the hierarchy. Then evidence, when it is 
available, can be applied to the appropriate level of 
abstraction.  Links between BNfrags at different levels of 
the hierarchy allow evidence at one level to support 
inference at another level of abstraction.  
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Knowledge can be refined along two 
dimensions: 

Type – We will usually start with the 
most specific target type for which the 
initial detection provides adequate 
evidence (e.g., tracked vehicle) and 
refine further as additional information 
is gathered. This refinement is 
performed based on both the 
information gathered so far and the 
commander’s interests. For example, a 
commander may not care about wheeled 
vehicles, but be particularly concerned 
about cross-country attacks from tracked 
vehicles, and want very refined 
classification on any tracked vehicle. 

Activity Aspect – Activities can provide powerful 
information about type, even in the absence of direct 
observations of type.  For example logistics vehicles often 
operate alone on a closed loop between a supply depot and 
a supported unit.  Combat vehicles – and most types of 
potential high value targets  - do not exhibit this behavior. 
The activity aspect also applies to the related activities of 
individual entities.  As an example, a HUMINT report 
may provide information that the fuel truck for a mobile 
missile launcher has just departed a supply depot. If 
assessed as credible, this report could cue an activity 
based query to an MTI database for possible combinations 
of tracklets leaving the depot at the correct time. The 
result of this query may lead to the fuel truck entity.  
Tasking sensors to follow the fuel truck may lead to direct 
observation of the mobile missile. 

Activities also occur in hierarchies.  The activities of the 
individual vehicles in a platoon are related to the platoon’s 
activities, which are in turn related to the company’s 
activities.  With a hierarchical activity model, it is 
possible to infer the activities of higher level units from 
observations on their members. 

The type and activity hierarchies provide a powerful and 
flexible way to represent doctrinal knowledge – about 
organization of forces, and about organized activities that 
military forces engage in.   

This kind of a hierarchical knowledge representation, with 
the capability to add additional BNFrags at the appropriate 
level of the hierarchy allow us to apply a wide range of 
evidence from diverse sources at multiple levels of 
abstraction to our information fusion problem. 

5 Situation Specific Bayesian Networks 
MEBNs, a powerful inference engine, and a hierarchical 
model of the problem domain are prerequisites for 

building a system that will automatically construct 
situation specific BNs. 

To reason about specified target hypotheses given 
evidence about a particular situation, an ordinary finite 
BN, called a situation-specific network (SSN), is 
constructed from a MEBN knowledge base. The SSN 
construction process is initiated when clusters of 
observations or reports trigger firing of a suggestor. 
Suggestors are modules that use features of the situation 
to determine which hypotheses need to be represented. 
The suggestor triggers retrieval of relevant BNFrags. 
Actual entities from the situation replace the variables in 
the BNFrags. 

After retrieval, the BNFrags are combined, possibly with 
an already existing SSN, to create a current SSN. Next, 
evidence is applied to the SSN and inferences are drawn 
about the target hypotheses. Finally, decision nodes are 
evaluated to determine what action needs to be taken. An 
architecture for SSN construction is shown in Figure 2. 

5.1 Automated Construction 
Hypothesis management is the name of the capability we 
embody in a software module that manages the 
composition of the constructed system model. It includes 
suggestors, described above, as well as rules for pruning 
hypotheses. Hypotheses management is an important part 
of the domain knowledge base.  Mission parameters 
establish the decisions to be made and the type of 
available evidence (e.g. sensor data). The specified 
decisions determine the relevance of elements of available 
evidence. Both the decisions and available evidence set 
the scope for the entities of interest and relationships to be 
included in the system model.  

Individual suggestors examine relevant evidence and the 
current state of the system model to suggest that new 
hypotheses be instantiated. For reasons of efficiency, 
individual suggestors are tailored to types of evidence and 
the entities of interest about which inferences are to be 
made. Consequently, the task of hypothesis management 

SSN 
Workspace

BNFrags
Knowledge

Base

Suggestors

Streaming Evidence

Alert Messages

Match BNFrags
variables

 &
 attach evidence

to variables

Combine BNFrags
into SSN &
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Figure 2 High Level Architecture for SSN Construction from MEBN 

Knowledge Base 
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meta-level reasoning is to select the suggestors that meet 
the requirements established by the mission parameters.  

Action level hypothesis management makes two types of 
decisions. Construction suggestors make decisions about 
what hypotheses to add to the constructed model. 
Revision suggestors make decisions about what to 
change within the model. 

The JPF knowledge structures a suggestor may reason 
about include the following [7]: 

Entities: whether an entity of interest exists. This is called 
existence uncertainty. False alarms are non-existent 
entities of interest.  

Relationships among entities: which two entities out of 
several possible pairing share a specified relationship. 
This is called reference uncertainty. Associating evidence 
with an object establishes a relationship. Reference 
uncertainty applies when there is uncertainty about which 
object actually caused the evidence. 

Entity types:  When an entity of interest is identified, it 
may be of one or more possible subtypes. This is called 
subtype uncertainty. 

Variable resolution: The best partition of a variable's 
possible values depends upon the requirements of the 
situation and the granularity of the available data.  

Dependency relation: We may want to 
modify/adapt/replace one conditional relationship with 
another as the context varies or we learn. 

When reasoning about an entity of interest, hypothesis 
management suggestors make decisions about 
instantiating instances of the entity, removing instances of 
the entity and revising entity instances. A suggestor may 
decide to instantiate the entity as a hypothetical 
(uncertain) instance. While the suggestor has some 
information associated with an entity of interest, there is a 
'reasonable' chance that this entity may be a false alarm. If 
there is enough information, the suggestor may 
recommend that the entity be instantiated as a certain one. 
Alternatively, the suggestor may choose to not instantiate 
the entity at this time because of insufficient information. 
Other suggestors may decide to remove the entity from 
the situation-specific network, decide to make a 
hypothetical entity into a certain one, or decide to take no 
action. Similar types of suggestors make reference 
uncertainty decision. Subtyping suggestors follow the isa 
relationship among entities. Variable resolution reasoning 
requires suggestors guided by the mission parameters to 
determine the granularity of the states of the variables. 
Granularity roughly corresponds to discrimination power. 
Whenever certain variables have known values, they 
effectively minimize the size of the conditional 

probability distributions. These are called context 
variables. However, in the course of a mission, a context 
variable may change or be found to be in error. 
Hypothesis management suggestors need to respond to 
that change and modify the conditional probability 
distributions of the model accordingly. 

An example software component that constructs SSNs is  
the Tactical Site, Group, Unit, and activity Detection and 
Assessment (TSGUDA) as it was used in the DARPA 
Dynamic Data Base (DDB) program [8]. This data 
consisted of fused tracks produced by the All-source 
Track and ID Fusion (ATIF) component, as well as MTI 
flow data and SIGINT emissions density data.  The first 
functional component of TSGUDA is the “suggestors”.  
They identify possible hypotheses which are passed to a 
software module called the assessment engine, which 
builds and maintains the SSN. The suggestors use the 
available knowledge models, and the current hypotheses 
maintained in the assessment engine.   The role of the 
suggestors is to detect, with a high probability of detection 
(and corresponding high false alarm rate) many possible 
candidate hypotheses from the data.  Note that the 
suggestors are part of the knowledge representation for the 
problem domain.  The suggestors determine how the data 
is potentially relevant to the current SSN, and suggest the 
addition of new BNFrags to the existing network.  They 
may also suggest the addition of new levels of the type or 
activity hierarchy.  

The candidate hypotheses, generated by the suggestors, 
are sent to the assessment engine, that is responsible for 
building and maintaining the situation specific BN.  
Hypotheses in the situation estimate are represented by 
nodes, or collections of nodes, in the BN.  The current BN 
can be queried at any time to provide an assessment of 
any hypotheses. The assessment engine is also capable of 
performing hypotheses management, by periodically 
evaluating all, or a specific subset of the probabilistic 
hypotheses and either eliminating them or declaring them 
to be true.   

The situation specific BN is maintained by the assessment 
engine. It changes dynamically over time, as suggestors 
present new candidate hypotheses, and as the hypothesis 
management functions prune the network.  There is also a 
capability to store the current state of the network in the 
“frame cache”.  This provides the capability to store the 
history of the situation estimate as it evolves over time, 
and a future capability to “backtrack” to an earlier state if 
the system discovers that it is diverged too far from 
reality. 

 

 

808



5.2 Evaluation 
To be of value, the results of Information fusion must be 
credible to decision makers. This requires that there is a 
way to evaluate the situation hypotheses that have been 
generated.   

In previo
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at either a
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•  A
s
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Relevant 

•  Type
plato

•  Location of entity; 

•  Composition of entity (e.g., number of elements of 
each type); 

•  Activity of entity. 

Evaluating the quality of a situation estimate in 
comparison with a ground truth scenario requires first 

truth 
 how 
us work [8, 9] we demonstrated the capability to 
he fidelity of a situation estimate to ground truth, 

associating situation hypotheses with the ground 
elements that gave rise to them and then evaluating
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Figure 3.  Experimental architecture. 
 single or at multiple levels of a force hierarchy.  

ents evaluated include: 

ypotheses about entities of interest and their 
ttributes; 

n indication of which reports and/or lower level 
ituation elements are associated with each 
ypothesized entity of interest; 

nferences about features of the entities of 
nterest. 

features may include: 

 of entity (e.g., maneuver company, engineer 
on); 

well the situation hypotheses represent the ground truth 
elements that they represent.  In particular, a situation 
estimate is a faithful representation of a ground truth 
scenario to the extent that: 

•  Most ground truth elements are associated with 
situation hypotheses (there are few missed 
detections); 

•  Most situation hypotheses have exactly one ground 
truth element associated with them (there are few 
false alarms); 

•  The features of interest (e.g., type, location, 
composition, activity) of the ground truth element are 
faithfully represented in the situation hypothesis. 
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The ability to generate a situation estimate has little value 
unless there is some confidence that the estimate is 
accurate enough to be useful to a decision maker.  An 
evaluation can be done subjectively by visually comparing 
a situation estimate with known ground truth. But a 
subjective evaluation is time consuming to perform and is 
of little value in quantifying the effects of small changes 
in domain models, suggestor logic, or hypothesis 
management.  In addition, there are usually only a limited 
number of ground truth data sets available.  Based on 
similar concerns in other problem domains we have 
developed an experimental architecture that allows us to 
systematically evaluate a system model and its 
components. The experimental architecture is shown in 
figure 3. 

Because of the limited real world ground truth, and the 

need to evaluate system model performance against a 
variety of scenarios, evaluations were performed with 
simulated scenarios. The simulations defined the types, 
membership, and activities of a hierarchy of military units, 
and then generate each specific vehicle track.  The vehicle 
tracks were then processed to simulate the TSGUDA 
inputs, normally received from the ATIF system.  The 
processing may be “error free” to provide ground truth 
data to TSGUDA, or it may simulate the types of errors 
characteristic of real TSGUDA input data. We 
implemented error models for probability of vehicle type 
ID, probability of detection, probability of correct 

association (of a vehicle track at one time step with the 
correct track at the next time step), and a false alarm rate. 

The simulated ground truth, with simulated error models 
applied, was then input to the system model, which 
generated situation estimates over time as the situation 
developed.  These situation estimates were compared to 
the original ground truth situation to generate a fidelity 
score.  The fidelity scoring process is described in [8].  
The results of the fidelity score can be used in a feedback 
process to tune the models, suggestor logic, and 
hypothesis management logic.  

It is understood that a fidelity measure can only be used 
when ground truth is available, so will be of no use in a 
real military situation where a TSGUDA like situation 
estimation capability is needed. Figure 3 also shows a 

confidence calculation.  The confidence measure is a 
metric developed by the system based on the quantity and 
believed quality of the input data, consistency between the 
available evidence, and the fit to existing models. The 
confidence measure will provide an estimate of the quality 
of the situation estimate independent of ground truth.  The 
theory for the confidence calculation has been developed 
[9], and implementation is in progress.  

6 Example 
An example that illustrates the ability to recognize a 
military force hierarchy as part of a situation assessment 

HQ

Ground Truth

HQ

P(exists)  P(type)

100 99

99 85

99 80

99 80

99 80

99 97

Score (Ave Loss): 122

Force Level Hypotheses 1

P(exists)  P(type)

100 Unk

99 Unk

99 Unk

99 Unk

99 Unk

Not Detected

Score (Ave Loss): 223

Force Level Hypotheses 2

Figure 4.  Ground truth force level hypotheses with two example situation hypotheses. 
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in Figure 4.  The assessment was performed using 
TSGUDA with simulated data. The ground truth force 
hierarchy is shown consisting of a Armor Heavy 
Company Team, with a HQs Plt, two Armor Platoons, and 
a Mechanized Infantry Platoon.  A simulated scenario that 
included coordinated activities of these units was used to 
generate ground truth tracks for all the individual vehicles.  
Then a level 1 fusion simulator was used to generate 
observed vehicle tracks.  These observed tracks included 
missed detections, false alarms, track misassociations and 
type misclassifications. This evidence was input to the 
TSGUDA system. There is also a separate Engineer 
Platoon. 

The TSGUDA system included domain models for 
platoon an company level force organization and 
activities.  Suggestors looked for clusters of vehicles and 
hypothesized that they were groups.  Other suggestors 
looked at the evidence for vehicle types in a hypothesized 
group, and suggested group, or unit, types.  Additional 
suggestors identified clusters of platoons to hypothesize 
company sized groups, and assessed platoon type 
hypotheses to suggest the company type.  In addition, 
other suggestors, evaluated the locations of individual 
vehicles to suggest possible platoon formations, which 
combined with activities of individual vehicles, suggested 
unit activities.  

Two example force level hypotheses, generated from two 
different sets of simulated level 1 fusion inputs, are also 
shown.  In the first, the simulated level 1 fusion errors 
were consistent with the performance of the ATIF system.  
In this example all platoons have been detected and 
identified with high probabilities. The differences between 
the ground truth and the hypotheses is in the hypothesized 
membership of the Engineer Platoon in the Company, and 
in the vehicles hypothesized as members of the Engineer 
Platoon (not shown).  The score (average loss from the 
fidelity scoring algorithm) is 122. 

The second force level hypotheses was generated from a 
simulation with significantly higher simulated level 1 
fusion errors.  This set of hypotheses contains a company 
of unknown type, consisting of three platoons of unknown 
type, and one additional platoon. The separate Engineer 
platoon was not detected in this example.  The score 
(average loss from the fidelity scoring algorithm) for this 
example is 223.  While these results are poorer then the 
first example, they do demonstrate that our approach for 
situation assessment can identify force hierarchies, even in 
the presence of significant input errors. 

7 Conclusions 
This paper has outlined the IET approach to situation 
assessment. Our key tenets are  

i) that hiearchical Bayesian inference as embodied in 
BNs provide a scientifically sound and robust 
uncertainty calculus; 

ii)  the SPI algorithm provides the necessary solution 
modularity to drive dynamic situation assessment; 

iii) that human expertise and domain knowledge can be 
captured in hierarchical models of the task domain;  

iv) the knowledge can be represented in modular and 
parametrizable BNFrags and MEBNs; 

v)  robust decision logic can be designed to guide the 
construction of situation specific BNs;  

vi) there are practical methodologies to evaluate the 
fidelity of assessment; 

vii) together, these elements provide a demonstrated 
capability to perform information fusion for 
dynamic, scalable situation assessment. 
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