Joint Data Management for MOVINT
Data-to-Decision Making

Erik P. Blasch
Defence R&D Canada-Valcartier
2459 Pie-XI Blvd. North
erik.blasch@drdc-rddc.gc.ca

Stephen Russell
Naval Research Laboratory
Washington, DC 20375
Stephen.russell@nrl.navy.mil

Guna Seetharaman
AFRL/RITB
Rome, NY, 13441
guna@ieee.org

Abstract – Joint data management (JDM) includes the hardware (e.g. sensors/targets), software (e.g. processing/algorithms), and operations (environments) of data exchange that enable persistent surveillance in the context of a data-to-decision (D2D) information fusion enterprise. Key attributes of an information system require pragmatic assessment of data and information management, distributed communications, knowledge representation, human-systems interaction, as well as a balanced sensor mix, algorithm choice, and life-cycle data management. Throughout the paper, we seek to describe the current technology, research approaches, and metrics that influence a realizable JDM product. We develop JDM methods for structured and unstructured data to determine an accurate target track and identification as a moving intelligence (MOVINT) capability. We examine classification methods of unstructured data using seismic, acoustic, and combined fusion methods for data analysis and information management.

Keywords: Information Fusion, MOVINT, data management, unstructured data, target tracking

1 Introduction

The goal of Joint Data Management (JDM) for MOVINT (intelligence about a moving object) is to design a tool that supports sensor placement, optimal data collection, and active sensor management for decision support, in an environment where data exchange is seamless, efficient, and appropriate across potentially diverse stakeholders. With limited sensor resources, there is a need to optimize sensor use that maximizes the sensor utility for users to observe moving targets [1]. The utility is based on the measures of effectiveness, which can vary over the targets of interest, sensor types, environmental conditions, situational context, and users [2].

MOVINT is an intelligence gathering method by which images (IMINT), non-imaging products (MASINT), and signals (SIGINT) produce a movement history of objects of interest. MOVINT provides both tactical and operational intelligence (situational awareness) of the dynamic environment. One example of MOVINT is detecting objects moving in an urban area [3]. Detecting objects can be completed by fixed ground cameras or on dynamic unmanned aerial vehicles (UAVS). If the sensors are on UAVS, path planning is needed to route the UAVs to observe the cars [4, 5] and cooperation among UAVs is necessary [6]. The Defense Advanced Research Projects Agency (DARPA) Grand Challenge featured sensors on mobile unattended ground vehicles (UGVs) observing the environment [7]. Mobile sensing can be used to orient [8] or conduct simultaneous location and mapping (SLAM) [9] to observe the environment or targets [10].

A significant challenge in detecting and tracking moving vehicles in an urban area over a long period of time is to acquire data in a persistent, pervasive, and an occlusion compensating manner [11]. There has been a recent surge in the design and deployment of wide field-of-view systems known as WAMI (wide area motion imagery) sensors, including the DARPA Autonomous Real-Time Ground Ubiquitous Surveillance Imaging System (ARGUS-IS). At any given instance, they produce images with dramatically varying point spread functions across a very large field of view; and, any given location undergoes persistent observation of varying spatial fidelity from different viewing directions as the sensor moves steadily in a fixed pattern above the city [11, 12]. A substantial amount of preprocessing, coupled with frame-to-frame, or frame-to-DTED (digital terrain elevation data) registration is applied before an image sequence can be analyzed in the context of multi-target tracking, or historical baseline similar to UAV video analysis or object deformation measurement tasks [13, 14]. Detection, feature extraction, post-processing, object detection, tracking, and track-stitching of moving vehicles in these videos is still a complex problem in terms of, fusion, computation and throughput [13, 15]. Motion detection-based track initialization for vehicle and people tracking using the flux tensor, aligned motion history images, and related approaches have been shown to be versatile approaches [12, 16, 17, 18]. Scaling these algorithms to very large WAMI sequences will require improved computer vision algorithms and multicore parallelization [15, 19]. Joint data management, summarization, and retrieval using content-based querying and searching of visual information with user feedback remain a significantly challenging area [20, 21].

Deployed ground sensors can observe the targets; however they are subject to the quality of the sensor measurements as a well as obstructions. One interesting question is how to deploy the fixed sensors that optimize the performance of a system. Efforts in distributed wireless networks (WSNs) [22] have resulted in many
issues in distributed processing, communications, and data fusion [23]. To facilitate both WSNs decision support, requires efforts in understanding the user’s needs [24], the theoretical and knowledge models [25], and situational awareness processing techniques [26]. In a dynamic scenario, resource coordination [27] is needed for both context assessment, but also the ability to be aware of impending situational threats [28].

For distributed sensing systems, to combine sensors, data, and user analysis requires pragmatic approaches to metrics [26, 29, 30, 31]. For example, Blasch developed fusion Quality of Service (QoS) metrics [26], Zahedi and Bisdikian [32] develop a Quality of Information (QoI) architecture for comparison of centralized versus distributed sensor network deployment planning, and Bisdikian, et. al. [33] propose Value of Information (Vol) metrics that can be useful in D2D evaluation.

Information fusion has been interested in database problems for target trafficability (i.e. terrain information) [34], sensor management [35], and processing algorithms [36] from which to assess objects in the environment. Various techniques have incorporated grouping object movements [37], road information [38, 39], and updating the object states based on environmental constraints [40]. Detecting, classifying, identifying and tracking objects [41] has been important for a variety of sensors, including 2D visual, radar [42], and hyperspectral [43] data; however newer methods are of interest to ground sensors with 1D signals.

The DARPA Sensor Information Technology (SensIT) program investigated deploying a distributed set of wireless sensors along a road to classify vehicles as shown in Figure 1. Given the deployed set of sensors, feature vectors were used to classify signals based on the data from the seismic and acoustic signals. [44] Various approaches include combining the data with decision fusion [45], value fusion [46], and simultaneous track and identification (ID) methods [47]. Information theoretical approaches including the Kullback–Leibler method were applied to the data for sensor management [48].

![Figure 1. SensIT Data from M. F. Duarte and Y. H. Hu, “Vehicle Classification in Distributed Sensor Networks,” 2004. [44]](image)

Figure 1. SensIT Data from M. F. Duarte and Y. H. Hu, “Vehicle Classification in Distributed Sensor Networks,” 2004. [44]

Much work has been completed using imaging sensors and radar sensors for observing and tracking targets. Video sensors are limited in power and subject to day/night conditions. Likewise, radar line-of site precludes them from observing in the same plane. Together, both imaging and radar sensors do not have the advantage of unattended ground sensors (UGS) which can power on and off, can work for a long time on battery power, and can be deployed to remote areas.

Track management situational awareness tools receive input from sensor feeds (examples include electro-optical, radar, electronic support measures (ESMs), and sonar) and display this information to a user. User inputs include: creation of new objects, such as tracks, contacts and targets. Methods to reduce data-to-decisions (D2D) include: fusing multiple tracks into a single track, incorporating alerting mechanisms, or visualizing track data common operational picture (COP). Sensor and track data can grow rapidly as the user desires to keep historical data. Wikipedia states that the use of relational database management systems (RDBMS) [49] provide support for track management; however, RDBMS requires a high level of maintenance, provides limited support for ad-hoc querying, involves rigid storage paradigms, and has scalability issues.

Our goal is to determine the possible JDM for D2D from the unstructured data to the classification decision over varying environmental conditions. JDM includes (1) sensor management and placement of these UGSs, (2) intelligent use of the data based on value for classification, (3) coordination of sensor data for detection, classification, or both, and (4) metrics to support the sensor and data management as supporting a user control. Together, these factors have to be addressed in decision support tools that aid an operational team that deploys, maintains, repairs, and then utilizes the data over a distributed network. Section 2 discusses classification, Section 3 details unstructured data, and Section 4 and 5 present an example with conclusions.

2 Target Location / Classification

We desire to produce a JDM system for D2D with a MOVINT capability, which introduces the question - what characteristics are relevant for such a system? MOVINT is an intelligence gathering method by which images (IMINT), non-imaging products (MASINT), and signals (SIGINT) produce a movement history of objects.

The goal is to utilize the UGSs sensors which may be acoustic, magnetic, seismic, and PIRoelectric (passive infrared) for motion detection. With a variety of sensors, information fusion of JDM for D2D can (a) utilize the most appropriate sensor at the correct time, (b) combine information from both sensors on a single platform, (c) combine results from multiple platforms, and (d) cue other sensors in a hand-off fashion to effectively monitor the area. Sensor exploitation requires an analysis of feature generation, extraction, and selection or (construction, transformation, selection, and evaluation). To provide track and ID results, we develop a MOVINT capability of the target location and identification.
Sensor exploitation includes detection, recognition, classification, identification, and characterization of objects. Individual classifiers can be deployed at each level to robustly determine the object information. Popular methods include voting, neural networks, fuzzy logic, neuro-dynamic programming, support vector machines, Bayesian and Dempster-Shafer methods. One way to ensure the accurate assessment is to look at a combination of classifiers. [50] Issues in classifier combination methods need to be compared as related to decisions, feature sets, and user involvement. Selecting the optimal feature set is based on the situation and environmental context of which the sensors are deployed. Typically, a mobile sensor needs to optimize its route and can be subject to interactive effects of pursuers and evaders with other targets [51] as well as active jamming of the signal [52].

Detecting targets from seismic and acoustic data in a distributed net centric fashion requires pragmatic approaches to sensor and data management. [53] To robustly track and ID a target requires both the structured data from the kinematic movements as well as the unstructured data for the feature analysis. [54]

3 Unstructured Data

Because effective MOVINT must incorporate diverse data structures, it is important that a JDM system address concerns of unstructured data. Unstructured data (versus) structured data refers to computerized information that does not have a data structure (i.e. exist within a database). Examples of “unstructured data” may include (1) textual: documents, presentations, spreadsheets, scanned images, etc., (2) imagery: multimedia files, streaming video, etc., (3) HUMINT: reports, audio files, and gestures, (4) sensors: seismic, acoustic, magnetic, sonar, etc., and (5) environmental: weather, GIS, etc. All of the data has to be collected, acquired, exploited, stored, recalled, and tagged, not to mention a host of other activities. Most of data that is collected has some structure; however, for information fusion the inherent structure is not common among entities.

Research has shown that over 95% of the digital universe is unstructured data. According to these studies, 80% of all stored organizational data is unstructured [55, 56]. This presents a critical challenge for large data technologies specifically in the area of data exchange because unstructured data must be structured before knowledge can be extracted and must therefore undergo some sort of transformation. The impact of this transformation affects the manner in which the data is stored, accessed, and utilized. The effects of the transformation are visible in the metadata, where the information contained in the data itself is described; illustrating the implications of data exchange on data integration. The relationship between data exchange and data integration is not trivial and from a decision-making perspective must be tightly linked together because the data is exchanged for a purpose, likely with other data. When characterized in this manner, the performance of data exchange has an implicit dependency on integration and therefore schema synthesis.

Managing data requires dealing with the structured and unstructured data with methods to allow the user and the algorithm to understand the credibility and complexity of the data.

3.1 Unstructured Information Challenge

Exclusive of the unstructured or structured nature of data, the premise of data exchange suggests a need for a unifying, ideally universal, data schema. The likelihood of achieving such a unified schema in the near term, particularly in a dynamic and diverse environment is unlikely. However that does not preclude the research merit in attempting to achieve such an objective; rather it underscores the importance of doing so.

The unified data integration model for situation management developed by Yoakum-Stover and Malyuta [57] presents a database-centric theoretical solution for unified storage of structured data that is viable in ultra-large scale systems environments. This solution is based on their Data Definition Framework (DDF). The DDF consists of six primitives (signs, mentions, terms concepts, statements and predicates) that describe the fundamental elements of data generically. The research proposes that these primitives can be utilized as a lossless foundational structure with which to decouple vocabularies/data models from the source data artifacts.

While the objective of a lossless unifying data model that allows integration of disparate data sources and model semantics is laudable as well as desirable, many practical considerations that have historically characterized data integration and fusion, present challenges to any solution’s viability. Exclusive any sociological, behavioral, or organizational obstacles to unified information spaces, which are not the focus of the research; the authors’ solution takes a step in the direction of addressing the practical technical issues. Despite the innovations present in the DDF, it suffers from some limitations that are particularly critical to a unified model. Most significantly, the linkages between the data and the model prevent the DDF from capturing concepts for which no data exists, which is essential for any unifying schema. To this extent the DDF would be effectively useless in cases where...
The DDF is only one notion of a unifying schema approach and there are others, including the Extended Entity Relationship data model (EER) [59], the Amsterdam Hypermedia Model [60], the object-oriented predicate calculus [61], the UCLA M Model [62], and the iMeMex Data Model. While having individual benefits over one another these models generally tend to focus on logical schema definition. The Amsterdam Hypermedia Model and the UCLA M Model target multimedia, timeline, and simulation data and as such lack broad generalizability to other data types. EER has grown in popularity and has become the basis for contemporary relational database modeling due to its visual effectiveness, but lacks the rich semantics of object oriented or other modeling constructs and is bound by the limitations in scaling of entity-relational structures.

3.2 InfoGrid NoSQL and Probe Framework: Data Exchange in a Non-Relational Schema

Given a generalized information model, there must exist and architecture that can support joint information management. InfoGrid [63] is an open-source software modular architecture that is comprised of a graph database that abstracts data stores’ interface to web applications. Figure 3 illustrates the high level architecture of InfoGrid. The design objectives of InfoGrid were to support a broad set of information types, connect information from different sources with an integrated application programmers’ interface that is schema-driven and support a broad range of applications. Within the InfoGrid structure, information is modeled as a semantic network. The design of InfoGrid resolves the join-scalability of relational databases and separates the tight integration between the data and the application.

InfoGrid specifically targets web applications. The Probe Framework, which is built on the InfoGrid platform, makes the content of external data stores and sources appear as InfoGrid objects that self-update. The Probe Framework does this by shadowing the content of external sources as they change through the implementation of probes that monitor and control updating effectively creating decentralized data sources with federated governance within the scope of the InfoGrid infrastructure. From this perspective probes operate like services that extend the external data source into the InfoGrid platform on which applications are layered.

The InfoGrid architecture has many benefits for data exchange in a large data context. It subsumes the challenges of unified schemas by providing both a middleware pass through (using the Probe Framework) as well as a centralized graph database (the MeshBase referred to in Figure 3) on which applications are built. The broad range of data stores addresses the diverse nature of data structure and incorporates utilities within the framework for specialized processing tasks. By adopting this architecture InfoGrid allows scalable applications to be created and maintained more quickly, more reliably and at lower cost by addressing the concerns of data exchange. Moreover, the generalized architecture can increase the availability of decision-related resources and therefore increase the probability of successful decision outcomes [64].

Data exchange can result from delivering the raw data versus publishing data summaries. Delivering the raw data requires an architecture that can support large volumes of data. Another method is to design the architecture such that the processing is embedded in the sensor to enable: faster data delivery, increased speed from data to decisions (D2D), and quicker ability to cue other sensors. Sensor distance and data amount are tradeoffs that must be accommodated for processing speeds of D2D. Processing the data at the sensor would require communication challenges between distributed sensors. For both cases, the architecture must address large amounts of data exchange and the speed of the communication for data exchange.

There are many techniques for processing unstructured data using known or a priori hypothetical situations. Since the data is unstructured it is essential to provide some context around which exploitation can be built. Approaches include: data transformation, analysis, and sampling, feature generation, association, selection and extraction; and decision classification such as Bayesian, Dempster-Shafer, and Support Vector Machines (SVM) methods for clustering and association rule extractions. Using the above methods, either known models or machine learned unknown models can help assess the data.
Data mining supports the processing of data, however, **ontologies** (or semantic models) can improve the categorization, storage, and indexing of the data. An ontology improves communication between humans and machines because an ontology contains machine-processable structures to disambiguate given data values as well as data structures.

3.4 Published/Filtered Data

Processing of large volumes of data requires metrics, architectural models, and operational realistic scenarios to test data search, access, and dissemination. Properly measuring significant parameters is critical to quantifying compliance and outcomes; yet doing so presents a challenge for eliciting quantifiable data, particularly in the case of architectural or system-related measures. Assessment of large data architectures requires a set of metrics that will objectively quantify performance of the architecture, its related technologies, and process/decision impacting outcomes. Relative to the JDM emphasis on large data, it is important to revisit a working definition of large data. Large data is when data has sufficient volume such that it cannot be completely processed for real-time decision making. Extending the definition to architectural metrics, additional focus should be given to scope measurements that determine the tradeoffs between cost, timeliness, throughput, accuracy, and confidence. The performance of a large data architecture (LDA), like any complex system is affected by its objectivity, context, and resolution of measurement. As a system increases in size, it becomes increasingly difficult to identify the complexity/flexibility/scalability and number of human participants of all relevant system elements or even quantify what should be measured.

There are two general perspectives on architectural metrics: measurement of the descriptive architecture itself and the measurement of the architectural artifacts. There is ample work detailing the measurement of artifacts, but the work measuring architectural quality is somewhat sparse. Yet there are advantages to descriptive architecture evaluations. These benefits include financial benefits, increased understanding and documentation of the artifact, detection of problems with the existing architecture, and clarification and prioritization of requirements [65]. Evaluating a descriptive architecture has an additional benefit in that it can provide the foundation for system performance assessment before the system is developed.

3.5 Data Management Metrics

Data exchange is an important area of information management that aims at understanding and developing foundations, methods, and algorithms for transferring data between differently structured information spaces to be used for diverse purposes. The exchange of data is but one critical step in information management. However the exchange of data is a linchpin for the success of any data management strategy or infrastructure. Efficient and effective exchange of data must address many issues beyond just getting the data to where it is needed (transport). Issues of dissemination (access, availability, control), quality (truth, relevance, accuracy), and timeliness (speed-to-need and information lifecycle) are exemplary list of challenges in data exchange. Similarly many of these metrics translate directly to decision outcomes (timeliness, user confidence, and accuracy). From a large data perspective, the process of data exchange is complicated by limitations in interoperability, diversity in applications and contexts, and even by the structure of the data itself.

A summary [66] of ten key requirements include:

- **Visibility**: Illustration such as folders and plots
- **Control**: Test, push, and pull of information
- **Auditing**: Complete and searchable
- **Security**: Data permissions and access
- **Performance**: Communication and traffic flow
- **Scale**: Amount of data
- **Ease of Installation**: Timeliness of submission
- **Ease of Use**: Distributed and timely access
- **Ease of Integration**: Interoperability
- **Cost of Ownership**: Money and effort

These methods are similar to the QoS/QoI fusion standard metrics such as timeliness, accuracy, confidence, throughput, and cost; [26] with most of the efforts in JDM focusing on throughput and timeliness.

Data maintenance is akin to equipment maintenance. In the case that equipment maintenance includes reliability, survivability, reparable, supportability, and other “ilities”; the same case can be made for data.

1. **Reliability** is that the data is available and timely which requires data storage, access, and retrieving methods. Data and information requires accurate updating. For example, acoustic data can be exploited for a target ID and saved in a target folder. However, if later, it was determined from HUMINT reports that it was a benign target or incorrectly labeled, the data (acoustic) and information (target ID) should be updated for the new confidence (target ID) and timeliness (where the target is at a certain time). Finally, the incorrect information needs to be removed from the target folder.

2. **Survivability**. The data needs to be correlated with the pedigree of the data collection and decision making processing. To ensure data availability, it needs to “survive” in the data base from which it is correctly called when needed. Note, as more data is stored, older data can get lost as things scale.

3. **Supportability**: One question is: Does the current data need various updates for hardware changes? If we are conducting data management, that also prioritizes archival management over various hardware changes. Likewise, software changes affect access to/from the data. Many times, data is stored with protocols and header files to be access by application and...
presentation architecture layers. When there is tight coupling between these layers and the data layer, access to the data may be affected. Maintaining compatibility software grand-fathering and other methods of ensuring backward compatibility are needed. Furthermore, one can think of future or emergent compatibility needs. Supportability could be maintained with standards and governance that are common (such as that for all the services) to support JDM and D2D.

4 Example/Simulation

Our example is based on three criteria: (1) real-world MOVINT scenario, (2) unstructured data (e.g. time series data without a prescribed model) and (3) context which aids in decision-making. Seismic and acoustic data is being collected from many sensors for three targets moving on a road. The road provides context to develop a model from the unstructured data to provide MOVINT. The real-world SensIT collection provides guidance for future collections to highlight JCM D2D technologies such as joint reporting for hard (physics-based) and soft (human text-based) fusion. To perform the data management we use data mining [67] techniques such as a support vector machine (SVM) [68, 69] to process the unstructured data. Through analysis, we can determine the optimum use of the data to detect a moving target.

4.1 Data Processing

To determine methods of Joint Data Management, we compare two cases of (1) processing the data separately and (2) jointly processing the acoustic and seismic results Figure 4(a) shows the case of the acoustic results for a receiver operator curve (ROC) [70].

Figure 4. (a) Acoustic and (b) Seismic ROCs for 3 targets.

Figure 4(b) demonstrates the results for the seismic results. Note that for the data set, the seismic results have a lower probability of false alarms for target 3 and target 2; however, target 2 exhibits more confusion.

4.2 Joint Data Management

Next we explore the case of the joint seismic and acoustic data management and utilize SVM for classification, shown in Figure 5. The key is the false alarm reduction which is desired by users. In general, the joint analysis supports better decision making as detection was improved for a constant false alarm rate, accuracy was improved as to the target location from joint spatial measurements, and timeliness in decision making as fewer measurements were needed to confirm the target ID (i.e. decision made with two modalities required fewer measurements than that of a single modality).

4.3 Visual Analytics MOVINT Display

Visual analytics provide methods to visualize and jointly manage data to decisions for MOVINT capabilities. For the operational analysis, we can provide an object track presentation. Here we present the salient features of the MOVINT classification information. Figure 6 presents a short history of the acoustic information and Figure 7 shows the case of the robust features for analysis.

Figure 5. Combined Seismic and Acoustic Results.

Figure 6. Acoustic Feature Analysis.

Figure 7. Feature Discrimination Plot.

We see that features 2-5 discriminate target 3 (blue), while features 6-7 discriminate target 2 (red), and feature
8-12 are for target 1 (cyan). From these plots, a user can determine not only the object location, but the key MOVINT target features enabling positive target ID. To utilize the QoS/QoI metrics [26] for Value of Information (Vol) [33], we determine whether the sensor is “useful” in decision-making at each time step. Figure 8 is a truncated plot of the Vol metrics, with the summary over all time steps plotted with the Vols: combined (seismic/acoustic) sensor = 0.782, acoustic = 0.684, and seismic = 0.664 over all three targets.

![Figure 8: Value of Information Plot.](image)

We present second example of JDM for D2D in our companion paper at the Fusion11 conference using wide area motion imagery (WAMI) [71].

5 Conclusions

We have explored methods for Joint Data Management (JDM) for MOVINT data-to-decision making. We utilize a support vector machine to process the unstructured classification data as well as the structured data of the target location. We showed that the JDM approach reduces the false alarms for enhanced and timely decision making. Next steps would be to investigate different classifiers and optimum feature vectors to improve JDM performance. JDM Information Quality, Quality of Service, and Value of Information needs can be linked to other sources of soft data (human reports) and hard (physics-based sensing) [72] to update situation reporting. JDM will require new methods in database management, information management, and measures of effectiveness for mission support that support the Data Information Fusion Group (DFIG) Level 5 Fusion [26, 73].

6 References

